
www.manaraa.com

This article was downloaded by: [Memorial University of Newfoundland]
On: 27 November 2014, At: 02:02
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer
House, 37-41 Mortimer Street, London W1T 3JH, UK

Intelligent Automation & Soft Computing
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/tasj20

Cryptographic Cloud Storage with Public
Verifiability: Ensuring Data Security of the YML
Framework
Xin Lv a b , Feng Xu a & Serge G. Petiton b
a College of Computer and Information, Hohai University , Nanjing , P.R. China
b Laboratoire d'Informatique Fondamentale de Lille , University of Sciences and
Technology of Lille , Lille , France
Published online: 17 Apr 2013.

To cite this article: Xin Lv , Feng Xu & Serge G. Petiton (2013) Cryptographic Cloud Storage with Public Verifiability:
Ensuring Data Security of the YML Framework, Intelligent Automation & Soft Computing, 19:2, 111-121, DOI:
10.1080/10798587.2013.786958

To link to this article: http://dx.doi.org/10.1080/10798587.2013.786958

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”)
contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors
make no representations or warranties whatsoever as to the accuracy, completeness, or suitability
for any purpose of the Content. Any opinions and views expressed in this publication are the opinions
and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of
the Content should not be relied upon and should be independently verified with primary sources of
information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands,
costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or
indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or
systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in
any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://www.tandfonline.com/loi/tasj20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/10798587.2013.786958
http://dx.doi.org/10.1080/10798587.2013.786958
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

www.manaraa.com

CRYPTOGRAPHIC CLOUD STORAGE WITH PUBLIC VERIFIABILITY:
ENSURING DATA SECURITY OF THE YML FRAMEWORK

XIN LV
1,2, FENG XU

1* AND SERGE G. PETITON
2

1College of Computer and Information, Hohai University, Nanjing, P.R. China
2MAP Team, Laboratoire d’Informatique Fondamentale de Lille, University of Sciences and Technology of

Lille, Lille, France

ABSTRACT—YML framework is a well-adapted advanced tool to support designing and executing

portable parallel applications over large scale peer to peer and grid middlewares. This work studies the

problem of ensuring data security of the YML framework. We define and construct a mechanism that

enables us to move the data repository to a public cloud infrastructure where the service provider is not

completely trustworthy. To achieve confidentiality, we encrypt the data using the encryption algorithm

in our prior work before uploading to the cloud, and then attach pre-classified keywords to them for

ciphertext-searching, which are generated by a statistically consistent public-key encryption with

keyword search (PEKS) scheme, so the service provider can use the corresponding trapdoor to identify

all data containing some specific keywords without learning anything else. To ensure integrity, an

elegant verification scheme is proposed, enabling a third party auditor (TPA), on behalf of data owner, to

verify the integrity of the (encrypted) data stored in the cloud. The introduction of TPA eliminates the

involvement of client through the auditing of whether his data stored in the cloud is indeed intact, which

can be important in achieving economies of scale for cloud computing.

Key Words: Data Repository; Cryptographic Cloud Storage; Bilinear Diffie-Hellman Problem;
Ciphertext-Searching; Statistical Consistency; Public Verifiability

1. INTRODUCTION

YML [1] framework has been developed since 2000. It acts as a well-adapted advanced tool to support

designing and executing portable parallel applications over large scale peer to peer and grid middlewares

[2,3]. YML includes a workflow language named YvetteML used in the description of applications and their

executions. YML furnishes a compiler and a just-in-time scheduler for YvetteML. It allows the user to

manage the execution of the application over the underlying parallel architecture which can be a peer to peer

or a grid middleware. The specificity of each middleware is hidden to the user through YML, making the

user can easily develop a complex parallel application which may transparently execute on multiple

middlewares during one application execution. The framework provides workflow engine capabilities on

top of a global computing platform, and it is designed to act transparently for complex applications using

numerous communications, code coupling, etc. on dynamic platforms. The extension version of YML is

able to manage at the run-time several middleware back-ends, achieving a dynamic federation of computing

middleware [4]. We also extend the framework to be middleware for cloud computing platform [5,6].

YML framework implies a lot of data exchange through the network. The Data Repository server acts

as a resource provider and delivers data to each component on demand. It is also the mediator for data

exchanging of the peers. This fashion hides the data migrations to the developer and ensures that necessary

q 2013 TSIw Press

*Corresponding author. Email: njxufeng@163.com

Intelligent Automation and Soft Computing, 2013

Vol. 19, No. 2, 111–121, http://dx.doi.org/10.1080/10798587.2013.786958

D
ow

nl
oa

de
d

by
 [

M
em

or
ia

l U
ni

ve
rs

ity
 o

f
N

ew
fo

un
dl

an
d]

 a
t 0

2:
02

 2
7

N
ov

em
be

r
20

14

www.manaraa.com

data are always available to all components of the application, also making the Data Repository become a

center which needs to be highly protected. In paper [7], we proposed an efficient threshold encryption

scheme to safeguard the process of data exchanging between each party (data repository, other components,

or peers). In this scheme, the data is transformed into half-ciphertext which is able to transfer in public

channel securely, and the sender (receiver) can efficiently prepare (recover) half-ciphertext (plaintext)

using his own piece of the key.

On the basis of this work, we are trying to move the Data Repository to a public cloud for reducing

capital and operational expenditures. While the benefits of using a public cloud infrastructure are clear,

it introduces significant security and privacy risks. In fact, it seems that the biggest hurdle to the

adoption of cloud storage is concern over the confidentiality and integrity of data. In the view of these

two key points, in this paper we present a cryptographic cloud storage scheme to ensure data security of

the YML framework. In our scheme, the data is stored on the cloud in ciphertext for confidentiality,

using the encryption scheme proposed in [7], particularly, we append to the ciphertext a public-key

encryption with keyword search of each keyword. As to integrity, we equip the verification protocol

with public verifiability, allowing anyone to have the capability to verify the correctness of the stored

data on demand without the local copy of data files, that is to say, we are able to delegate the evaluation

of the service performance to an independent third party auditor, without devotion of our own

computation resources.

The rest of the paper is organized as follows. We explain the application scenario and the architecture

of the proposed scheme in Section 2, including overview of YML, system model, and security model.

A concrete construction is then given in Section 3. It is followed by a specific security and efficiency

analysis on the concrete scheme in Section 4, 5. Finally we conclude the paper in Section 6.

2. PROBLEM STATEMENT

2.1 Overview of YML

YML is a framework dedicated to the creation and the execution of parallel and distributed applications

on various middleware. It proposes an intuitive representation of a distributed and parallel application

by means of a workflow. The main structures of YvetteML are: the services execution, the parallel

sections, the sequential loops, the parallelized loops, the conditional branch and the event notification/

reception.

YML represents the notion of computing task by components, called services. Each computational task

is described by an abstract service and is implemented in an implementation service. Services information

is contained into two catalogs. A Development Catalog stores information used at the time of the

application development. An Execution Catalog stores information used during the execution of the

application.

Figure 1 gives a simplified view of an YML framework. We notice that there are four entities.

The CLIENT provides the computational components (abstract and implementation services) and the

application graph expressing the control workflow.

YML workers are managed by any kind of middleware as long as a back-end enables to handle it.

YML is the core of the “sandwich” architecture. It hides to the client the complexity and

the heterogeneity of the computing platform. YML is composed of a front-end layer and a back-end layer.

The Data Repository server interacts with the YML workers and the YML front-end. Basically, this

server is in charge of storing the binary of components and the input parameters. It delivers such data to

the YML workers and collects output results which are used by the YML scheduler to select the next

eligible task.

Intelligent Automation and Soft Computing112

D
ow

nl
oa

de
d

by
 [

M
em

or
ia

l U
ni

ve
rs

ity
 o

f
N

ew
fo

un
dl

an
d]

 a
t 0

2:
02

 2
7

N
ov

em
be

r
20

14

www.manaraa.com

2.2 System model

A representative architecture for cryptographic cloud storage is illustrated in Figure 2. Five different

entities can be identified as follow: three of them are same as that in the traditional YML framework

(CLIENT, YML, YML workers), and Data Repository has been moved to a Cloud Storage Server, besides,

Third Party Auditor (TPA) is in charge of verifying the integrity of the data.

In the cloud paradigm, by putting the large data files on the remote servers, we are relieved of the

burden of storage and computation. As we no longer possess our data locally, it is necessary to ensure that

the data are being correctly stored and maintained. In this paper, we delegate the monitoring task to a

trusted TPA: any TPA in possession of the public key can act as a verifier (to protect data privacy, audits are

performed without revealing original data files to TPA). We assume that TPA is unbiased while the server

is untrusted.

CLIENT

WWW

YMLData Repository

Development catalog

Resources Informations

Execution catalog

Data Reposltory Server
Binary generator Middleware specific back-end

Back-end scheduler

YML Scheduler

YML Compiler
Component generator

BACK-END layer

FRONT-END layer

www

YML workers Middleware

YML Worker(s)

Application of the client
(e.g. 4 components)

Figure 1. Overview of YML framework.

Cryptographic Cloud Storage with Public Verifiability 113

D
ow

nl
oa

de
d

by
 [

M
em

or
ia

l U
ni

ve
rs

ity
 o

f
N

ew
fo

un
dl

an
d]

 a
t 0

2:
02

 2
7

N
ov

em
be

r
20

14

www.manaraa.com

2.3 Security model

Our security model is the same as the one proposed in [8] for PoR system. Generally, the checking scheme

is secure if (i) there exists no polynomial-time algorithm that can cheat the verifier with non-negligible

probability; (ii) there exists a polynomial-time extractor that can recover the original data files by carrying

out multiple challenges-responses. The authors in [8] also define the correctness and soundness of PoR

scheme: the scheme is correct if the verification algorithm accepts when interacting with the valid prover

(e.g., the server returns a valid response) and it is sound if any cheating server that convinces the client it is

storing the data file is actually storing that file.

3. THE PROPOSED SCHEME

3.1 Notation and preliminaries

Bilinear Pairing. A bilinear pairing is a map e:G1 £ G1 ! G2, where G1 is an additive cyclic group of prime

order p andG2 is a multiplicative cyclic group with the same order. Themap satisfies the following properties

[9]: (i) Computable: given g, h [G1 there is a polynomial time algorithm to compute e(g, h) [G2;

(ii) Bilinear: for any integers x, y [[1, p] we have e(g x, g y) ¼ e(g, g)xy; (iii) Non-degenerate: if g is a

generator of G1 then e(g, g) is a generator of G2.

Efficient Threshold Encryption Scheme [7]. The scheme we proposed in [7] is based on the RSA

cryptosystem. (e, d) is the RSA public/secret key, and a trusted third party (TTP) divides d into enough

pieces di using a simple polynomial f(x), making any two pieces are matched. Then it distributes them to

YML Framework

YML

CLIENT

YML workersCloud Service Provider
(Data Repository)

Third Party Auditor

Data Flow

Cloud
Storage
Servers

Security Message Flow

Secu
rity

 M
ess

age Flow

Security Message Flow

Figure 2. Cryptographic cloud storage architecture.

Intelligent Automation and Soft Computing114

D
ow

nl
oa

de
d

by
 [

M
em

or
ia

l U
ni

ve
rs

ity
 o

f
N

ew
fo

un
dl

an
d]

 a
t 0

2:
02

 2
7

N
ov

em
be

r
20

14

www.manaraa.com

each entity in the YML framework. In the process of encrypting and decrypting, the sender firstly encrypts

the data with d, and then decrypts the ciphertext preliminarily with his own key (piece), finally sends the

half-ciphertext to the receiver (transfers to data repository at first, and then it can be retrieved by the others).

Because any two pieces can collaborate to complete decrypting, the receiver is able to obtain the data

(plaintext) immediately. The following are the concrete steps:

(1) Entity i (sender) encrypts the data: c ¼ memodN;

(2) Then decrypts the ciphertext preliminarily: ch ¼ ðcÞdi ·ð2xjÞ=ðxi2xjÞ mod N;

(3) Transfer (c, ch) to the data repository, and then they can be retrieved by entity j;

(4) Entity j (receiver) obtain the data: m ¼ ðcÞdj ·ð2xiÞ=ðxj2xiÞ mod N.

We plan to store all the (c, ch) on the public cloud instead of the Data Repository with pre-classified

keywords, then the peers or the YML components can directly retrieve the data from it, so the efficiency of

the data exchanging must be advanced.

3.2 Definitions

3.2.1 Public-key encryption with searching: definition

Before uploading the data to the cloud, we firstly transform them from plaintext to half-ciphertext, in order

to make the resulting ciphertext searchable, a secure public key encryption with keyword search (PEKS)

scheme is utilized. It appends the keywords to the ciphertext, so the encrypted data with keywords W1,

W2, . . . ,Wk is in the following form:

½DHC; PEKSðDpub; W1Þ; . . . ;PEKSðDpub; WkÞ�

where DHC is the half-ciphertext of the data, Dpub is the public key of the Data Repository, and PEKS is an

algorithm with properties discussed below. The PEKS values do not reveal any information about the data,

but enable searching for specific keywords.

The goal is to enable the cloud server to locate all data containing the keyword W using a short

secret key TW generated by us, but learn nothing else. We produce this trapdoor TW by the private key

of the Data Repository. Then the server simply sends the relevant ciphertext back to the

YML components or the peers. We call such a system non-interactive public key encryption with

keyword search.

Definition 1. A non-interactive public key encryption with keyword search scheme consists of the

following polynomial time randomized algorithms:

(1) KeyGen(1k): takes a security parameter k, and generates a public/private key pair Dpub and Dpriv.

(2) PEKS(Dpub, W): for a public key Dpub and a word W, produces a searchable encryption of W.

(3) Trapdoor(Dpriv,W): given the private key of the data repository and a wordW, produces a trapdoor

TW.

(4) Test(Dpub, S, TW): given the public key of the data repository, a searchable encryption S ¼ PEKS

(Dpub, W
0), and a trapdoor TW ¼ Trapdoor(Dpriv, W), outputs ‘yes’ if W ¼ W0 and ‘no’ otherwise.

We run the KeyGen algorithm to generate the public/private key pair of the data repository. The

data requester (peers or the YML components) uses Trapdoor to generate trapdoors TW for any

keywords W that it wants the cloud server to search for. The cloud server uses the given trapdoors as

input to the Test algorithm to determine whether given data contains one of the keywords W specified

by the data requester.

Cryptographic Cloud Storage with Public Verifiability 115

D
ow

nl
oa

de
d

by
 [

M
em

or
ia

l U
ni

ve
rs

ity
 o

f
N

ew
fo

un
dl

an
d]

 a
t 0

2:
02

 2
7

N
ov

em
be

r
20

14

www.manaraa.com

3.2.2 Public verification for storage correctness assurance

In order to make the outsourced data verifiable, we design a signature scheme, providing an efficient way,

to allow anyone (TPA), not just ourselves, to perform periodical integrity verifications on demand.

Definition 2. An integrity assurance signature scheme consists of the following algorithms:

(1) KeyGen(1k): this probabilistic algorithm is run by ourselves. It takes as input security parameter 1k,

and returns public key pk and private key sk.

(2) SigGen(sk, D): It takes as input private key sk and a file D which is an ordered collection of blocks

{ci}, and outputs the signature set F, which is an ordered collection of signatures {si} on {ci}.

(3) GenProof(D, F, chal): this algorithm is run by the cloud server. It takes as input a file D, its

signatures F, and a challenge chal. It outputs a data integrity proof P for the blocks specified by

chal.

(4) VerifyProof(pk, chal, P): this algorithm can be run by either ourselves or the third party auditor

upon receipt of the proof P. It takes as input the public key pk, the challenge chal, and the proof P

returned from the server. It outputs TRUE if the integrity of the file is verified as correct or FALSE

otherwise.

3.3 Construction

In our construction, we use BLS signature [10] as a basis to design the system. G1 and G2 are the groups

defining in Section 3.1, and g is a generator of G1. Let e: G1 £ G1 ! G2 be a bilinear map, and H1:

{0, 1}* ! G1, H2: G2 ! {0, 1}3k, H3: {0, 1}
* ! {0, 1}k, and H4: {0, 1}

* ! {0, 1}k are random oracles.

f(k) ¼ k lg (k). k is a security parameter. The procedure of our protocol execution is as follows:

B Pre-Processing: we first process the data to half-ciphertext DHC using the encryption scheme

mentioned in Section 3.1, and then prepare the Public-Key Encryption with Keyword Search (PEKS) for

each pre-classified keyword, using a scheme defined by Definition 1, which will be attached to the data

before uploading to the cloud.

KeyGen(1k)

a ˆ RZ
*
p; Dpub ˆ (1k, g, g a, G1, G2, p, e)

Dpriv ˆ (Dpub, a); return (Dpub, Dpriv).

PEKS H1, H2, H3, H4(Dpub, W)

if jWj $ f(k) then return W

r ˆ RZ
*
p; T ˆ e(g a, H1(W))r

K1 ˆ H4(T); K2 ˆ H2(T)

K ˆ R{0, 1}
k; c ˆ K1%K

t ˆ H3(KkW)

return (g r, c, t, K2)

B Signature Generation: as in the previous PoR system [11], we encode the raw ciphertexts

D̃ ¼ {DC, DHC}(DC, DHC are the ciphertext and half-ciphertext of the data respectively) into D

using Reed-Solomon codes and divide the encoded file D into n blocks c1, c2, . . . , cn, where

ci [Z*
p.

The public and private keys used in this process are generated by invoking KeyGen(1k) defined in

Definition 2. Here we use the same public key and secret key in Pre-Processing, that is, pk equals to Dpub,

and sk equals to Dpriv.

Intelligent Automation and Soft Computing116

D
ow

nl
oa

de
d

by
 [

M
em

or
ia

l U
ni

ve
rs

ity
 o

f
N

ew
fo

un
dl

an
d]

 a
t 0

2:
02

 2
7

N
ov

em
be

r
20

14

www.manaraa.com

SigGen(sk, D)

parse D as (c1, c2, . . . , cn)

u ˆ RG1; si ˆ (H1(ci)�u ci)a for each ci(i ¼ 1, 2, . . . , n)

return F ¼ (s1, s2, . . . ,sn)

We finally upload {[D, PEKS H1, H2, H3, H4(Dpub, W)], F} to the cloud server and delete them from its

local storage.

B Ciphertext-Searching: when the data requester wants to retrieve the encrypted data tagged with a

certain keyword, Trapdoor(Dpriv,W) is invoked to create the corresponding trapdoor TW. The trapdoor is

sent to the cloud server who uses it to carry out Test(Dpub, S, TW), retrieving the appropriate (encrypted)

files which it returns to the data requester. Then it can decrypt the ciphertext using its own piece of the

decryption key.

Trapdoor H1(Dpriv, W)

TW ˆ (H1(W)a, W)

return TW
Test H1, H2, H3, H4(Dpub, S, TW)

if jWj $ f(k) then

if S ¼ W then return 1 else return 0

if S cannot be parsed as (g r, c, t, K2) then return 0

T ˆ e(g r, H1(W)a)

K ˆ c%H4(T)

if K2 – H2(T) then return 0

if t ¼ H3(KkW) then return 1 else return 0

B Proof Generation: we or the third party, e.g., TPA, can verify the integrity of the outsourced

data by challenging the server. To generate the message “chal”, the TPA (verifier) picks a random

c-element subset I ¼ {s1, s2, . . . ,sc} of the set [1, n], where we assume s1 # s2 # · · · # sn. For each

i [I, the TPA chooses a random element vi ˆ Z*
p. The message “chal” specifies the positions of

the blocks to be checked in this challenge phase. The verifier sends the chal {(i, vi)}s1# i # sc
to the

prover (server). Upon receiving the challenge, the server executes GenProof (D, F, chal) to

generate the proof.

GenProof (D, F, chal)

parse D as (c1, c2, . . . , cn)

F as (s1, s2, . . . ,sn)

chal as {(i, vi)}s1# i # sc

mˆPsc
i¼s1

vici [Z*
p;sˆQsc

i¼s1
s vi

i [G1

return P ¼ {m, s, H1(ci)s1# i # sc
}

Then, the prover responds the verifier with proof P ¼ {m, s, H1(ci)s1# i # sc
}.

B Proof Verification: upon receiving the responses from the prover, the verifier runs VerifyProof(pk,

chal, P) to verify the integrity of the selected blocks.

VerifyProof (pk, chal, P)

parse chal as {(i, vi)}s1# i # sc

P as {m, s, H1(ci)s1# i # sc
}

if eðs; gÞ ¼ e
Qsc

i¼s1
H1ðciÞvi�um; ga

� �
then return TRUE else return FALSE

Cryptographic Cloud Storage with Public Verifiability 117

D
ow

nl
oa

de
d

by
 [

M
em

or
ia

l U
ni

ve
rs

ity
 o

f
N

ew
fo

un
dl

an
d]

 a
t 0

2:
02

 2
7

N
ov

em
be

r
20

14

www.manaraa.com

4. SECURITY ANALYSIS

Bilinear Diffie-Hellman Problem (BDH): g is a generator of G1, given g a, g b, g c [G1 as input, compute

e(g, g)abc [G2. We say that BDH is intractable if all polynomial time algorithms have a negligible

advantage in solving BDH.

Privacy. Privacy for a PEKS scheme asks that an adversary should not be able to distinguish between

the encryption of two challenge keywords of its choice, even if it is allowed to obtain trapdoors for any non-

challenge keywords. Formally, we associate to any adversary A and a bit b [{0, 1} the following

experiment:

Experiment Exp
peks2ind2cpa2b
PEKS;A

WSetˆ f; ðpk; skÞˆ KeyGenð1kÞ
pick random oracle H

ðw0;w1; stateÞˆ ATRAPDð�Þ;Hðfind; pkÞ
C ˆ PEKSHðpk;wbÞ
b0 ˆ ATRAPDð�Þ;Hðguess;C; stateÞ
if fw0;w1}>WSet ¼ f then return b0 else return 0

��������������������

Oracle TRAPDðwÞ
WSetˆWSet< fw}
tw ˆ TdHðsk;wÞ
return tw

The PEKS-IND-CPA-advantage of A is defined as

Adv
peks2ind2cpa
PEKS;A ðkÞ ¼ Pr Exp

peks2ind2cpa21
PEKS;A ðkÞ ¼ 1

h i
2 Pr Exp

peks2ind2cpa20
PEKS;A ðkÞ ¼ 1

h i

A scheme PEKS is said to be PEKS-IND-CPA-secure if the above advantage is a negligible function in k

for all PTAs (Polynomial Time Adversary) A.

Theorem 1. The PEKS scheme proposed in Pre-Processing is PEKS-IND-CPA-secure assuming that the

BDH problem is hard relative to generator g.

See literature [12] for the detailed proof.

Any cryptographic primitive must meet two conditions. One is of course a security condition. The

other, which we call a consistency condition, ensures that the primitive fulfills its function. In a PEKS

scheme, Alice can provide a gateway with a trapdoor tw (computed as a function of her secret key) for any

keyword w of her choice. A sender encrypts a keyword w0 under Alice’s public key pk to obtain a ciphertext
C that is sent to the gateway. The latter can apply a test function Test to tw, C to get back 0 or 1. The

consistency condition is that if w ¼ w0 then Test (tw, C) returns 1 and if w – w0 it returns 0.
To define consistency, we take an approach like security condition. Namely, we imagine the existence

of an adversaryU that wants to make consistency fail. More precisely, let PEKS ¼ (KG, PEKS, Td, Test) be

a PEKS scheme. We associate to an adversary U the following experiment:

Experiment Exp
peks2consist
PEKS;U ðkÞ

ðpk; skÞˆ KGð1kÞ; pick random oracle H

ðw; w0Þˆ UHðpkÞ; C ˆ PEKSHðpk; wÞ; tw0 ˆ TdHðsk; w0Þ
if w – w0 and TestHðtw0 ; CÞ ¼ 1 then return 1 else return 0

Intelligent Automation and Soft Computing118

D
ow

nl
oa

de
d

by
 [

M
em

or
ia

l U
ni

ve
rs

ity
 o

f
N

ew
fo

un
dl

an
d]

 a
t 0

2:
02

 2
7

N
ov

em
be

r
20

14

www.manaraa.com

We define the advantage of U as

Adv
peks2consist
PEKS;U ðkÞ ¼ Pr Exp

peks2consist
PEKS;U ðkÞ ¼ 1

h i

where the probability is taken over all possible coin flips of all the algorithms involved, and over all possible

choices of random oracle H. The scheme is said to be perfectly consistent if this advantage is 0 for all

(computationally unrestricted) adversariesU, statistically consistent if it is negligible for all (computationally

unrestricted) adversaries U, and computationally consistent if it is negligible for all PTAs U.

Theorem 2. The PEKS scheme proposed in Pre-Processing is statistically consistent.

See literature [12] for the detailed proof.

Theorem 3. If the signature scheme is existentially unforgeable and the BDH problem is hard, no adversary

against the soundness of our public-verification scheme could cause verifier to accept in a proof-of-

retrievability protocol instance with non-negligible probability, except by responding with correctly

computed values.

Theorem 4. Suppose a cheating prover on a n-block file F is well-behaved in the sense above, and that it is

1-admissible. Let v ¼ 1/#B þ (rn)l/(n 2 c þ 1)c. Then, provided that 1 2 v is positive and non-

negligible, it is possible to recover a r-fraction of the encoded file blocks in O(n/(1 2 r)) interactions with
cheating prover and in O(n 2 þ (1 þ 1n 2)(n)/(1 2 v) time overall.

Theorem 5. Given a fraction of the n blocks of an encoded file F, it is possible to recover the entire original

file F with all but negligible probability.

Due to space limitations, the detailed proofs of Theorems 3, 4 and 5 are provided in [13].

EFFICIENCY ANALYSIS

Let X, H, A, M, E, and P respectively denote XOR operation, Hash operation, Addition, Multiplication,

Exponentiation, and Pairing operation. The amounts of calculation needed in each process of the proposed

scheme are listed in Table I.

Through the analysis in Table I, most of calculations have the computation complexity of O(1) except

Hash operation, Multiplication, and Exponentiation in the process of signature generation has a O(n), and

this process is completed offline, which has no negative influence on online running efficiency. Clearly, the

proposed scheme has a high efficiency on Ciphertext-Searching, and the task of proof verification is

delegated to TPA, without expending our own computation resources. Therefore, our scheme is feasible in

computational efficiency.

CONCLUSIONS AND PERSPECTIVES

We defined and constructed a cryptographic cloud storage scheme with public verifiability, to support

moving the data repository of YML framework to a public cloud infrastructure where the service provider is

not completely trustworthy. A statistically consistent PEKS scheme was utilized to figure out the issue of

Cryptographic Cloud Storage with Public Verifiability 119

D
ow

nl
oa

de
d

by
 [

M
em

or
ia

l U
ni

ve
rs

ity
 o

f
N

ew
fo

un
dl

an
d]

 a
t 0

2:
02

 2
7

N
ov

em
be

r
20

14

www.manaraa.com

ciphertext-searching, which is PEKS-IND-CPA-secure based on BDH problem. A soundness verification

scheme was proposed, and then the TPA takes on the burden of integrity verification by challenging the

cloud server.

The support for data dynamics via the most general forms of data operation, such as block modification,

insertion and deletion, is also a significant step toward practicality, since services in Cloud Computing are

not limited to archive or backup data only. While prior works on ensuring remote data integrity often lacks

the support of dynamic data operations, so we will concentrate on this point in future work. Also, we will

improve the proposed storage scheme by deploying and testing it in the simulated cloud environment. The

testing phase will bring new perspectives and will show needed adaptation of the current methods.

ACKNOWLEDGEMENTS
This paper is supported by National Natural Science Foundation of China: “Research on Trusted Technologies for The Terminals in

The Distributed Network Environment” (Grant No. 60903018) and “Research on the Security Technologies for Cloud Computing

Platform” (Grant No. 61272543).

NOTES ON CONTRIBUTORS
Xin Lv is a PhD candidate in the College of Computer and Information at Hohai University. His research

is mainly focused on digital signature applications and security in e-commerce.

Feng Xu is a Professor in the College of Computer and Information at Hohai University. His main

research interests are trusted computing and network information security.

Table 1. The amounts of calculation needed in each process.

Calculation pre-processing Signature generation Ciphertext searching Proof generation Proof verification

X 1 0 1 0 0

H 4 n 4 0 c

A 0 0 0 c 2 1 0

M 0 n 0 2c 2 1 c

E 3 2n 1 c c þ 1

P 1 0 1 0 2

Note: n denotes the number of all the data blocks, and c denotes the number of the blocks to be checked.

Intelligent Automation and Soft Computing120

D
ow

nl
oa

de
d

by
 [

M
em

or
ia

l U
ni

ve
rs

ity
 o

f
N

ew
fo

un
dl

an
d]

 a
t 0

2:
02

 2
7

N
ov

em
be

r
20

14

www.manaraa.com

Serge G. Petiton is a Tenured Professor in University of Sciences and Technology of Lille. His current

research areas include high performance computing language and framework, parallel and distributed

computing.

REFERENCES
[1] YML Project Page. http://yml.prism.uvsq.fr

[2] Delannoy, O., & Petiton, S. (2004). A Peer to Peer computing framework: Design and performance evaluation of YML.

Proceedings of third international workshop on parallel and distributed computing, 2004 (pp. 362–369). Los Alamitos, CA:

IEEE Computer Society.

[3] Delannoy, O., Emad, N., & Petiton, S. (2006). Workflow global computing with YML. Proceedings of the 7th IEEE/ACM

international conference on grid computing, GRID’06 (pp. 25–32). New York: ACM Press.

[4] Choy, L., Delannoy, O., Emad, N., & Petiton, S. (2009). Federation and abstraction of heterogeneous global computing platforms

with the YML framework. Proceedings of international conference on complex, intelligent and software intensive systems,

CISIS’09 (pp. 451–456). Los Alamitos, CA: IEEE Computer Society.

[5] Shang, L., Petiton, S., Emad, N., Yang, X. L., & Wang, Z. H. J. (2009). Extending YML to be a middleware for scientific cloud

computing. Proceedings of first international conference on cloud computing, CloudCom 2009 (Vol. 5931, pp. 662–667). Berlin:

Springer-Verlag, LNCS.

[6] Shang, L., Petiton, S., Emad, N., & Yang, X. L. (2010). YML-PC: A reference architecture based on workflow for building

scientific private clouds. Cloud computing principles, systems and applications, Part 2 (Vol. 0, pp. 145–162). Berlin: Springer-

Verlag.

[7] Lv, Xin, Petiton, Serge G., Shang, Ling, Wang, Zhijian, & Xu, Feng (2012). Cryptographic methods for securing the

YML framework. 1st International conference on systems and computer science, ICSCS 2012. Villeneuve d’Ascq, France,

August 29–31.

[8] Shacham, H., & Waters, B. (2008). Compact proofs of retrievability. In J. Pieprzyk (Ed.), ASIACRYPT 2008 (Vol. 5350,

pp. 90–107). Heidelberg: Springer, LNCS.

[9] Boneh, Dan, & Franklin, Matthew K. (2003). Identity based encryption from the Weil pairing. SIAM Journal on Computing,

32(3), 586–615.

[10] Boneh, D., Lynn, B., & Shacham, H. (2001). Short signatures from the Weil pairing. In C. Boyd (Ed.), ASIACRYPT 2001 (Vol.

2248, pp. 514–532). Heidelberg: Springer, LNCS.

[11] Juels, A., & Kaliski, B. S. Jr (2007). Pors: proofs of retrievability for large files. Proceeding of CCS 2007 (pp. 584–597). New

York: ACM Press.

[12] Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-Lee, J., Neven, G., Paillier, P., Shi, H. (2005).

Searchable encryption revisited: Consistency, properties, relation to anonymous IBE, and extensions. Advances in Cryptology -

CRYPTO 2005 (Vol. 3621, pp. 205–222). Berlin: Springer-Verlag, LNCS.

[13] Wang, Q., Wang, C., Li, J., Ren, K., & Lou, W. Enabling public verifiability and data dynamics for storage security in cloud

computing. Cryptology ePrint Archive. https://eprint.iacr.org/2009/281.pdf

Cryptographic Cloud Storage with Public Verifiability 121

D
ow

nl
oa

de
d

by
 [

M
em

or
ia

l U
ni

ve
rs

ity
 o

f
N

ew
fo

un
dl

an
d]

 a
t 0

2:
02

 2
7

N
ov

em
be

r
20

14

http://yml.prism.uvsq.fr
https://eprint.iacr.org/2009/281.pdf

